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A B S T R A C T

Objective: Alzheimer’s disease (AD) is a prevalent form of dementia worldwide as a cryptic neurodegenerative
disease. The symptoms of AD will last for several years, which brings great mental and economic burden to
patients and their families. Unfortunately, the complete cure of AD still faces great challenges. Therefore, it is
crucial to diagnose the disease in the early stage.
Materials and Methods: The Visual Geometry Group (VGG) network serves as the backbone for feature extraction,
which could reduce the time cost of network training to a certain extent. In order to better extract image in-
formation and pay attention to the association information in the images, the group convolutional module and
the multi-scale RNN-based feature selection module are proposed. The dataset employed in the study are drawn
from [18F]FDG-PET images within the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database.
Results: Comprehensive experimental results show that the proposed model outperforms several competing ap-
proaches in AD-related diagnostic tasks. In addition, the model reduces the number of parameters of the model
compared to the backbone model, from 134.27 M to 17.36 M. Furthermore, the ablation reaserch is conducted to
confirm the effectiveness of the proposed module.
Conclusions: The paper introduces a lightweight network architecture for the early diagnosis of AD. In contrast to
analogous methodologies, the proposed method yields acceptable results.

1. Introduction

Alzheimer’s Disease (AD) is a prevalent form of dementia charac-
terized by prominent symptoms such as memory loss and cognitive
decline, significantly disrupting the daily lives of those afflicted [1]. It is
widely recognized that the pathological progression of AD commences
many years prior to the manifestation of overt dementia symptoms,
ushering in a pre-clinical stage characterized by the absence of
discernible cognitive impairments [2–4]. While a definitive cure for this
condition remains elusive, patients can receive medications aimed at
enhancing cognitive function. To ensure more effective treatment, pre-
cise and early diagnosis of the disease is imperative [5].
Historically, AD diagnosis has relied on a triad of methods including

brain histopathological analysis, neuropsychological testing, and neu-
roimaging. Among these, brain histopathological analysis has held the
position of the gold standard for AD diagnosis [6]. However, the

invasiveness of brain histopathological analysis procedure inflicts
trauma upon patients, rendering it unsuitable for routine clinical
application. In parallel, while neuropsychological testing provides
valuable insights into cognitive function, it exhibits certain limitations
in terms of diagnostic rigor and accuracy, thereby constraining its utility
in the context of AD diagnosis. In light of these limitations, neuro-
imaging techniques have emerged as a promising avenue for enhancing
the precision of AD diagnosis.
Mild cognitive impairment (MCI) is a prodromal form of dementia,

defined as a cognitive impairment that does not interfere with activities
of daily living. Although patients with MCI do not show obvious clinical
features, it can lead to AD or other degenerative dementias in the future
[7,8]. Diagnosis of this disease is challenging, even for experienced
neurologists, and in some cases it can be difficult to decide on appro-
priate treatments. Therefore, physicians use diagnostic tests, such as
neurofunctional imaging, to provide a more accurate clinical assessment
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[9]. Compared with Magnetic Resonance Imaging (MRI) imaging,
Positron Emission Tomography (PET) imaging can observe abnormal-
ities in relevant brain areas earlier [10], which is beneficial for early
diagnosis of AD. [18F]FDG PET scan measures brain glucose metabolism
and has been reported as a useful biomarker for identifying the above-
mentioned neurodegenerative diseases [11].
Machine learning, particularly deep learning techniques, has found

widespread application across various domains within the field of
medical image analysis, including but not limited to Computed To-
mography (CT), Ultrasound (US), MRI, and PET imaging [12]. The
deployment of deep learning in medical image analysis tasks is of
immense importance, especially in the context of medical auxiliary
diagnosis [13]. Notably, numerous deep learning methods have been
introduced for AD diagnosis. However, these methods predominantly
either rely on pre-existing domain knowledge or extract image feature
information from individual image slices. For instance, Shi, et al. [14]
proposed a network approach based on the division of Regions Of In-
terest (ROI) for AD diagnosis, whereas Rashid et al. [15] developed a
technique to predict AD based on 2D image slices by extracting key
features from anatomical images.
Despite the promising contributions of these methodologies, they

exhibit certain limitations. Firstly, approaches that hinge on prior
knowledge for feature extraction [14,16] necessitate a template of the
anatomical region within the image, potentially introducing bias in the
regional information when constructing ROI. Second, when employing
2D networks for image processing, most of the existing networks
[15,17,18] mainly focus on the information of individual regions of the
image while ignoring the correlations in the image. In addition, some
researchers have opted for the use of 3D networks [19,20] to emphasize
inter-image correlation information. However, it is essential to
acknowledge that training 3D networks is associated with substantial
time and cost investments.
In order to address the limitation of 2D networks to focus only on a

single image region, this study proposes an automatic diagnostic ar-
chitecture for diagnosing attention deficit disorder. Different from the
existing approaches, the contributions are distinct in the following
aspects:

1. Diagnosis for multiple stages of AD, the discovery of the MCI stage is
more valuable and challenging.

2. Incorporation of a Group Convolution module (GConv) meticulously
tailored to the network architecture, facilitating the extraction of
deeper image features. This innovation effectively broaden the
network, enhancing its overall expressive capability.

3. Introduction of a multi-scale RNN-based Feature Selection Module
(RFSM), which comprehensively assesses both the global and
regional information within individual images.

The structure of this article unfolds as follows: Section 2 elucidates
pertinent prior research; Section 3 expounds upon the novel network
model and its specific training strategies; Section 4 describes the diag-
nostic performance of the proposed model through experimental results;
Section 5 discusses the performance and advantages and disadvantages
of the model; finally, Section 6 summarizes the methodology proposed
in the article and describes future research directions.

2. Related works

The field of AD diagnosis has garnered considerable global research
interest in recent years. Notably, the fusion of AD diagnosis with arti-
ficial intelligence (AI) techniques has yielded promising outcomes.
These AI methodologies encompass predictive models based on pre-
trained networks, the development of 2D and 3D network architec-
tures, and the utilization of machine learning algorithms such as support
vector machines and random forest techniques.
Presently, the prevailing research approach predominantly revolves

around the prediction and diagnosis of AD using 2D network architec-
tures. This approach primarily relies on network models pre-trained on
ImageNet and newly proposed network structures. The research en-
deavors by Janghel, Ding [18], and M. Ghazal [21] have demonstrated
the effectiveness of fine-tuning pre-trained models, highlighting the
potential of transfer learning in AD diagnostic tasks. Novel models have
also exhibited commendable performance, as evidenced by Tuan [22],
who introduced an Auto Encoder network designed to diagnose AD by
effectively discerning regions of interest within the brain. Cui [16]
introduced the BMnet network, focused on extracting interregional
representation features and identifying challenging samples through the
construction of embedding spaces. Chang [23] developed a CNN
network model architecture for the diagnosis of AD and its distinction
from other medical conditions. Collectively, these studies underscore
the robust performance of 2D models in AD diagnosis.
Furthermore, to enhance the consideration of inter-image correlation

and improve task accuracy, some researchers have proposed the use of
3D networks for AD diagnosis. For example, De Santi [19] proposed a 3D
convolutional neural network approach for multi-classification AD
research, while Etminani [20] developed and validated a 3D CNNmodel
capable of predicting diseases such as AD and MCI. Although 3D net-
works can capture greater image-to-image correlation information, they
do not consistently outperform their 2D counterparts and often entail
higher time costs.
In conclusion, AI-based methods have yielded satisfactory results in

the realm of AD diagnostics. The integration of image-based AD diag-
nosis into clinical practice has gradually evolved into a pivotal aid in
enhancing clinical diagnoses.

3. Material and methods

3.1. Data collection

The data utilized in this study was sourced from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database [24], accessible at
https://adni.loni.usc.edu. The ADNI was launched in 2003 as a pub-
lic–private partnership led by principal investigator Michael W. Weiner,
MD. The primary goal of ADNI has been to test whether serial MRI, PET,
other biological markers, and clinical and neuropsychological assess-
ment can be combined to measure the progression of AD.
For model training and testing, we employed [18F]FDG PET images

that had undergone preprocessing by the ADNI team. The images sub-
jected to the highest level of preprocessing were selected. The pre-
processing steps encompassed several critical stages, including frame co-
registration for dynamic acquisitions, frame averaging to generate a
single PET image, reorientation into a standard 160 × 160 × 96 voxel
image grid with isotropic voxels measuring 1.5 mm, intensity normali-
zation utilizing subject-specific masks to achieve an average signal value
of one within the mask, and lastly, the application of a smoothing filter
to approximate the lowest scanner resolution used in ADNI. For
comprehensive insights into acquisition protocols and preprocessing
procedures, readers are encouraged to refer to the ADNI website
(https://www.adni-info.org/).
Images in DICOM format of 304 different subjects obtained using

different scanners were downloaded from the ADNI website. Acquisi-
tions belong to three different classes and are labeled according to the
clinical evaluation performed by ADNI centers: Cognitively Normal (CN)
(106 scans), MCI (105 scans), and AD (93 scans). Each case consisted of
96 slices with dimensions of 160 × 160 and voxel sizes of 1.5 × 1.5 ×

1.5 mm, ensuring consistency across the dataset. To provide visual
context, a selection of representative samples utilized in our experiments
is presented in Fig. 1.
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3.2. Proposed methods

3.2.1. Convolutional neural network architecture
In diagnostic tasks, the VGG16 [25] network pre-trained on Image-

Net is used as the backbone network for image feature extraction. The
backbone network can be formulated as follows:

y = r(x) (1)

where y is the output, x ∈ RC×N×N is the input of the model, where C is
the number of channels, N is the size of images, and the r(x) is the
feature extraction part of VGG16 network. The backbone network con-
sists of 13 convolutional layers with trainable weight parameters and
pooling layers for data dimensionality reduction. The convolution ker-
nels of the convolutional layers are all 3 × 3. In the features extracte
part, only the features part of the backbone network are used.
To further capture deep image features, a new block based on group

convolution is added after the backbone network. Drawing inspiration
from the work of Liu et al. [26] on ConvNet, the GConv block is pro-
posed, which is characterised by grouping the channels of the input

image. GConv not only accomplishes what normal convolution does, but
also reduces the likelihood of overfitting. Building upon findings from
ConvNet, which demonstrated that reducing the use of activation layers
can enhance accuracy. Therefore, only a ReLU activation function is set
after the last convolutional layer of the GConv block. The GConv module
includes 3 group convolutional layers and a ReLU activation layer.
GConv module can be formulated as follows:

μ = R[g(g(g(y
C
n × N× N

)))] (2)

where μ is the output, R is the activation layer, g is a standard group
convolution layer, y is the input of GConv module, where n is the
number of groups in the group convolution. This strategic reduction in
activation layers streamlined the model while yielding improvements in
experimental accuracy.
At the same time, in order to focus on the information of different

areas in the image, a multi-scale RFSM is proposed. Complete feature
information of the image is obtained by putting the feature map into the
multi-scale RFSM. Finally, the complete image feature information is
input to the classifier layer for classification. The comprehensive ar-
chitecture of the network model is visually depicted in Fig. 2.

3.2.2. A multi-scale RNN-based feature selection Module(RFSM)
In this task, the complexity of the images is high due to the diagnosis

of the human brain. It is important to focus not only on the overall in-
formation of the image, but also on the details of the image for accurate
diagnosis. So the multi-scale RFSM is proposed to meet the requirement.
Traditionally employed for processing sequential data, Recurrent Neural
Networks (RNNs) have proven to be remarkably effective in tasks
characterized by sequential data patterns. Therefore, the idea of
combining an RNN with a classification task is proposed, and its specific
structure is shown in Fig. 2.
The input to the RFSM consists of the pooled feature map and the

Fig. 1. (a) is the image of CN, (b) is the image of MCI, (c) is the image of AD.

Fig. 2. Architecture of the proposed convolution neural network.
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initial feature vector of the hidden layer. The feature map possesses a
shape size of (B, H × W, C), while the initial feature vector is charac-
terized by dimensions of (1, B, C). Through the application of RFSM, two
additional layers are incorporated, namely a ReLU activation layer and a
Softmax classifier. A pivotal step in this process involves the summation
of the output vector derived from the RNN and the original input feature
map along the first dimension. Consequently, this yields an output
vector with dimensions of (B, C).
In addition, in order to concentrate the information from different

regions of the image, the feature map of the image is converted into four
sizes using the average pooling method: 1 × 1, 2 × 2, 5 × 5, 7 × 7. Then
finally merge all the information in the first dimension. The fusion of
overall information and regional information is achieved by the way.
Finally the integrated image information is put into the classification
layer for diagnosis. The multi-scale RFSM thus plays a vital role in
capturing essential image features and contributes significantly to the
classification model’s efficacy. The calculation process of multi-scale
RFSM is shown as Algorithm 1.
Algorithm 1. Calculations of the multi-scale RFSM

Input Preprogress images x, Pre-trained model C, GConv module G, RFSM module R
// Step 0: Obtain the feature maps μ
Use C and G to progress image xcto obtain μ.
// Step 1: Obtain the feature information from multi-scale R
for k in avgpool kernels K(1, 2, 5, 7):
perform k on μ to obtain f
enter f into R to get Ii
end for
feature information = torch.cat(Ii, dim = 1)
Output feature information

3.3. Experiments details

The utilization of the backbone network necessitates specific image
dimensions, compelling us to adjust both the image size and the number
of channels. In the study, individual PET image sizes were converted
from 160 × 160 × 1 to 224 × 224 × 3 and then normalised.
The dataset comprises a train-set, a validation-set, and a test-set. It is

worth noting that all the image information for the entire case was used
considering the integrity of the data. Considering that the 96 images in
each case were similar, the dataset was not simply divided according to
the corresponding proportions in order to avoid data leakage. Instead,
place the training set from the test-set separately. Among the training
set, 80 % is used as train-set, 20 % is used as validation-set.
The training regimen employs the cross-entropy loss function, the

stochastic gradient descent (SGD) optimizer, and a minibatch strategy.
Among the model training details, the cross-entropy loss function is the
classical loss function for classification, and its specific definition is
shown in Equation (3). In the SGD optimizer, Learning Rate (LR) is set to
1e-3, and batch size is set to 32. To avoid overfitting during network
training, an early stop mechanism is set, in which the epoch is set to 500
and patience is set to 10.

L = − [ylogŷ + (1 − y)log(1 − ŷ) ] (3)

where y is the real label value and ŷ is the predicted label value.
All research in this paper is based on the Python 3.9 programming

language, implemented using PyTorch 1.12.0. All experiments were
conducted on a computer with 128 GB of memory, running theWindows
11 operating system. The NVIDIA GeForce RTX 3090 graphics card was
utilized for the training, with the computer containing a 12th Gen Intel
(R) Core(TM) i9-12900 K 3.20 GHz central processing unit.

3.4. Performance of evaluation

Based on the confusion matrix, the following parameters can be
calculated to check the performance of the model:

accuracy =
TP+ TN

TP+ FP+ TN+ FN
(4)

sensitivity =
TP

TP+ FN
(5)

specificity =
TN

TN+ FP
(6)

where given by the classifier, TP, TN, FP, and FN are true positive, true
negative, false positive, and false negative, respectively.

4. Experiments results

4.1. Performance comparison

To justify the performance of the proposed model for AD diagnosis,
the experimental results are compared with several competing methods
on the same experimental data in three classification tasks (i.e., CN vs.
AD, CN vs. MCI, and AD vs. MCI), which are reported in Table 1. And in
Table 1, ACC is accuracy, SEN is sensitivity and SPE is specificity.
It can be seen that the model proposed in the paper can achieve the

best performance, i.e., the accuracy can reach 92 %, under the diag-
nostic task of CN vs. AD in Table 1. Meanwhile, under the diagnostic
tasks of CN vs. MCI and AD vs. MCI, the proposed model achieves
acceptable results in terms of accuracy, specificity and sensitivity. Since
the proposed model is based on VGG16 model as the feature extraction
part. Therefore, compared with the backbone model, the accuracy of the
proposedmodel is improved in all three diagnostic tasks. This also shows
the effectiveness of the proposed modules, i.e., the GConv module and
the RFSM module.
In addition, in order to better validate the robustness of the proposed

model, the Receiver Operating Characteristic (ROC) curves of all models
were summarized, as shown in Fig. 3. It can be seen that the model has
the best performance in the CN vs. AD diagnostic task, and the Area
Under Curve (AUC) value can reach 0.96. The value of the AUC in the CN
vs. MCI diagnostic task can reach 0.85, which is a slightly lower per-
formance compared to the AD vs. MCI, but it has already reached an
acceptable result in the comparison model.

4.2. Ablation experiments

The number of parameters of the backbone model is 134.27 M, and
the model accuracy of 76 % in the CN vs. AD diagnostic task and 66 % in
the CN vs. MCI diagnostic task and the AD vs. MCI diagnostic task. To
improve the accuracy of the AD classification network model, the
following strategic adjustments were made to the backbone model:

Proposed GConv block: The number of groups of the GConv block is
consistent with the input channel, which effectively broadens the
network and enhances the expressive ability.
Introduction to multi-scale RFSM: To investigate the impact of in-
formation from different regions of the feature map on diagnostic
outcomes, a multi-scale concept was introduced. Experimental re-
sults show that focusing on information in different areas of the
feature map has a great impact on the classification results. RFSM is
then introduced to selectively retain salient image features in key
blocks and regions that affect the classification results, while paying
attention to the correlation information in the image. This optimi-
zation improves the efficiency and accuracy of classification models.

In addition to the above modifications to the network model, the
hyperparameters in the model training process are also slightly adjusted,
mainly to study the impact of LR on the model results, and the specific
results are shown in Table 2.
Judging from the experimental data, the addition of the GConv block

Y. Wang et al.
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only increased the number of parameters by 0.01 M, but compared with
the backbone network model, the accuracy increased by 8 % in the task
of CN vs. AD. As can be seen from Table 2, the improved model not only
improves the accuracy of diagnosis, but reduces the number of param-
eters to a certain extent. The number of model parameters was reduced
from 134.27 M to 17.36 M, while the accuracy increased from 76 % to
92 % in the task of CN vs. AD, an increase of about 16 %. Also in the task
of CN vs. MCI and AD vs. MCI, the accuracy of the proposed model
increased compared to the backbone model.
In order to verify the generality of the proposed modules, the GConv

module and RFSM module are added to different backbone models, and
the specific results are shown in Fig. 4. Here, “original” refers to the
unchanged model, and “modified” indicates the model after integrating
proposed modules. From the Fig. 4, it can be observed that for the

majority of networks, the performance improves with the addition of
GConv module and RFSM. However, there is a declining trend in the
performance of some networks. Specifically, in terms of accuracy, the
proposed model appears to be more suitable for the VGG and Resnet
series models, while exhibiting a declining trend in ShufflenetV2. This
indicates that the proposed module has certain limitations and may not
be universally applicable to all networks.

5. Discussion

The study introduces a novel AD classification model based on
backbone network, achieving a classification accuracy of 92 % in the
task of CN vs. AD for PET images.
As can be seen from Table 3, the network model has achieved per-

formance relevant to the relevant literature. The datasets reported in
Table 3 are [18F]FDG PET images of patients from ADNI, and the task is
to classify AD. Although these experimental results cannot be directly
compared with our experimental results, they can reflect the effective-
ness of the proposed model to a certain extent.
The feature extraction part of the pre-trained model on ImageNet is

used to extract image feature information in the task. In order to better
adapt to the task of AD diagnosis, we subsequently fine-tuned the
transfer learning model. It can extract useful information from images
more accurately, accelerate the convergence speed of the model, and
reduce the training time. In terms of model training time, the training
time of ordinary models is twice or even more than the training time of
transfer learning models. This also reflects an advantage of transfer
learning in the task.
The RFSM is set to select image features in the work, which could get

relatively good results. RFSM can effectively screen features that are
effective for classification results, remove irrelevant information, and
more importantly, capture information between images, thereby
improving the accuracy of classification results. The application of the
RFSM shows that the twomajor tasks of natural language processing and
image processing are related to a certain extent, and they can be

Table 1
Comparison of classification results of different methods.

Classification Metrics(%) Densnet 169 Resnet 18 Resnet 34 Resnet 50 ShufflenetV2 VGG 16 CAD [27] SCNN [28] Proposed

CN vs. AD ACC 78 % 78 % 78 % 80 % 78 % 76 % 82 % 68 % 92 %
SEN 84 % 80 % 84 % 80 % 84 % 68 % 84 % 64 % 100 %
SPE 72 % 76 % 72 % 80 % 68 % 84 % 80 % 72 % 84 %

CN vs. MCI ACC 74 % 70 % 72 % 70 % 70 % 62 % 70 % 62 % 78 %
SEN 72 % 56 % 74 % 60 % 68 % 68 % 60 % 60 % 76 %
SPE 76 % 84 % 82 % 80 % 71 % 64 % 80 % 64 % 80 %

AD vs. MCI ACC 74 % 70 % 72 % 70 % 74 % 66 % 64 % 62 % 78 %
SEN 72 % 78 % 76 % 56 % 68 % 64 % 68 % 64 % 80 %
SPE 76 % 62 % 68 % 78 % 70 % 68 % 60 % 60 % 76 %

Fig. 3. ROC curves for each comparison model under the corresponding diagnostic task.

Table 2
Network model modification process and experimental results.

Classification Parameters ACC SEN SPE AUC

CN vs.
AD

Base 134.27 M 76% 68 % 84
%

0.86

Base + GConv 134.28 M 84% 88 % 80
%

0.91

Base + GConv +
RFSM

17.36 M 92% 100
%

84
%

0.96

CN vs.
MCI

Base 134.27 M 62% 60 % 64
%

0.80

Base + GConv 134.28 M 72% 68 % 76
%

0.82

Base + GConv +
RFSM

17.36 M 78% 76 % 80
%

0.85

AD vs.
MCI

Base 134.27 M 66% 64 % 68
%

0.70

Base + GConv 134.28 M 70% 72 % 68
%

0.75

Base + GConv +
RFSM

17.36 M 78% 80 % 76
%

0.83

Y. Wang et al.
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interconnected in some processing methods.
There are some limitations in this research. For example, the pro-

posed module is not fully adapted to all backbone models, and the effect
is more significant only on VGG and Resnet series models. The relevant
module needs to be further modified. Second, the diagnostic effect of the
model in the CN vs. MCI and AD vs. MCI diagnostic tasks needs to be
further improved. Furthermore, we acknowledge the potential influence
of the study sample composition on the model’s generalizability,
particularly given the significantly higher prevalence of AD (47 %)
compared to the general/actual population (~10%). Such disparity may
lead to varied model performance across different populations. Moving
forward, we aim to comprehensively address the dataset composition to
enhance its representation of the overall population. Concurrently, ef-
forts will be directed towards refining the model to optimize its
performance.

6. Conclusion

In this research, a network model is presented that is designed for the
diagnosis of [18F]FDG PET images in AD, a crucial step in clinical staging
diagnosis. The model not only reduces the number of parameters of the
model from 134.27M to 17.36M, but achieves an accuracy from 76% to
92 % in the CN vs. AD diagnostic task. Also achieves an accuracy from
62 % to 78 % in the CN vs. MCI diagnostic task, and the accuracy from
66 % to 78 % in the AD vs. MCI diagnostic task. In this study, GConv
module and RFSM module are proposed. And the effectiveness of the
GConvmodule and RFSMmodule is verified in the ablation experiments.

While previous studies have demonstrated the advantages of PET
imaging in early AD diagnosis, it is noteworthy that PET images solely
provide functional imaging information and lack anatomical imaging
information, which may pose limitations, particularly in early AD
diagnosis. Therefore, in subsequent investigations, we will continue to
prioritize PET imaging as the primary modality, complemented by MRI
imaging as auxiliary anatomical information, to further advance
research on early AD diagnosis through multimodal imaging ap-
proaches. In conclusion, the article proposes a lightweight and effective
network model for AD diagnosis.

7. Summary table

What was already known on the topic?

• Increasing numbers of individuals worldwide are afflicted by Alz-
heimer’s disease (AD); however, there persist challenges in the
manual diagnosis of Alzheimer’s disease among physicians, partic-
ularly concerning early-stage AD diagnosis.

• The application of deep learning techniques enables physicians to
identify Alzheimer’s disease (AD) patients at an earlier stage utilizing
positron emission tomography (PET) scans, thereby facilitating early
intervention and mitigating the progression of AD pathology.

• Most of the previous studies focus on the information of a single
region of the image, although the 3D network model can focus on the
information between images, but its parameters are large, the
training time is long, and there are no scientific studies to show that
the 3D model has superior performance over the 2D model.

What this study added to our knowledge?

• This study proposes a novel method that combines RNN and CNN
models to diagnose AD using a multi-scale RNN-based feature in-
formation extraction module.

• This methodology has demonstrated favorable outcomes in AD
diagnosis and has been validated for its efficacy across various
baseline models.

• This study presents a novel approach to advancing computer-aided
diagnosis of AD.

• Future research endeavors should include reporting on the sensi-
tivity, specificity, positive and negative predictive values, as well as
overall accuracy of the models, thereby enhancing experimental
rigor in validating and analyzing model performance.

8. Statements & declarations

Ethics approval: Since a public dataset was used, there is no need of
Ethical Approval.

Fig. 4. The accuracy results of ablation experiments: (a) is CN vs. AD, (b) is CN vs. MCI, and (c) is AD vs. MCI.

Table 3
Compare the experimental results in the CN vs. AD diagnostic task.

Method Modality Accuracy Sensitivity Specificity AUC

Tufail
et al.,2022
[29]

PET 55.4 % 42.9 % 67.8 % − ————

Jiaoet al.,2023
[30]

PET 81.9 % 83.8 % 78.6 % − ————

Hao et al.,2020
[31]

PET 80.1 % 86.0 % 71.9 % 0.85

Janghel
et al.,2021
[17]

PET 71.4 % 82.3 % 57.8 % 0.82

Tufail
et al.,2020
[32]

PET 80 % 71 % 84 % 0.78

Pan et al.,2020
[33]

PET 88.9 % 83.9 % 93.8 % 0.96

Liu et al.,2018
[34]

PET 84.5 % 82.8 % 86 % 0.92

Ismail
et al.,2023
[35]

PET 89.8 % 86.3 % 91.9 % − ————

Proposed PET 92 % 100 % 84 % 0.96

Y. Wang et al.
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